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Abstract

Lianas can create dense foliage that reduces the light available for the host

trees on which they grow and can directly damage the host trees during their

development. A better estimation of liana load and understanding of the

determinants and impacts of liana load in tropical forests are both important

in community ecology and ecosystem science. This has, however, never been

studied to date in central Africa. Here, we evaluated the intensity, determi-

nants, and impacts of liana load in three forest sites in central Africa.

We determined the liana load categories for all trees belonging to 78 of the

most dominant tree species (2683 trees in total), with tree diameters ranging

from 10 to 250 cm. The liana load was visually estimated as the liana cover

on host tree using simple scale indices, and the proportion of trees covered by

lianas defined as the liana prevalence was estimated for each species.

Overall, 42% of the 2683 trees were liana-loaded and the number of

liana-loaded trees was higher for smaller diameter classes in the three forest

sites. Within each forest site, there was a significant difference in liana preva-

lence among coexisting species. Taller trees with shallow crowns were less

covered by liana at the tree level, whereas trees belonging to light-demanding

and wind-dispersed species showed a lower liana prevalence rate at the spe-

cies level. In each forest site, the liana load significantly affected tree

height–diameter allometry, with liana-loaded trees being shorter for the same

diameter. Lianas promote the structural complexity and influence tree

diversity and ecosystem functioning of tropical forests.

KEYWORD S
central Africa, dispersal mode, height–diameter allometry, liana load, liana prevalence,
light requirement, tree species

Received: 17 June 2022 Revised: 16 July 2022 Accepted: 8 August 2022

DOI: 10.1002/ecs2.4322

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Ecosphere published by Wiley Periodicals LLC on behalf of The Ecological Society of America.

Ecosphere. 2022;13:e4322. https://onlinelibrary.wiley.com/r/ecs2 1 of 12
https://doi.org/10.1002/ecs2.4322

 21508925, 2022, 12, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4322 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [18/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-6466-1508
https://orcid.org/0000-0002-1136-4307
https://orcid.org/0000-0002-3277-898X
https://orcid.org/0000-0001-9333-8964
https://orcid.org/0000-0002-6770-0031
mailto:loubotagrace@gmail.com
http://creativecommons.org/licenses/by/4.0/
https://onlinelibrary.wiley.com/r/ecs2
https://doi.org/10.1002/ecs2.4322
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecs2.4322&domain=pdf&date_stamp=2022-12-18


INTRODUCTION

Lianas or woody vines are an important component of
forest communities and play a significant role in ecosys-
tem processes (Schnitzer & Bongers, 2002, 2011).
They use the architecture of trees to climb to the top of
the canopy (Schnitzer & Bongers, 2002), but they fre-
quently occur in both crown and stem (Ingwell
et al., 2010; Putz, 1984a, 1984b; van der Heijden &
Phillips, 2009). Once they reach the tree crown, lianas
can create dense foliage that reduces the light available
for the trees on which they grow (Clark & Clark, 1990;
Fauset et al., 2017). The weight added by lianas on tree
crowns can cause mechanical damages to branches and
stems, and can directly damage host trees (Laurance
et al., 2014; Phillips et al., 2005; Schnitzer et al., 2000;
Schnitzer & Bongers, 2011; van der Heijden &
Phillips, 2009). As a result, trees with a strong liana load
are more prone to stem breakages, leading to mortality.
Although ground-based measurements of lianas can be
linked to remote sensing measurements, which provide a
very-high-resolution view of liana distribution above the
canopy over large extents and over time in tropical forests
(Kaçamak et al., 2022), they nevertheless remain chal-
lenging and time-consuming. Many tropical foresters and
ecologists have therefore sought shortcuts to describe the
liana load carried by trees by using simple ordinal
scale indices estimating “liana load” visually (Clark &
Clark, 1990; Muller-Landau & Visser, 2019; Rutishauser
et al., 2011; van der Heijden et al., 2010).

At the tree level, the crown of more than 50% of trees
were liana-loaded in Amazonia (Reis et al., 2020; van der
Heijden et al., 2008; van der Heijden & Phillips, 2009), but
the intensity of liana load varied among potential host
trees. It has been suggested that the characteristics of host
trees may be more important than the direct effects of
the physical environment in controlling the success of
lianas in tropical forests (van der Heijden et al., 2008).
Trees growing in close proximity to others already
supporting lianas may be more prone to be liana-loaded as
lianas often grow from one crown to another (Putz, 1984b;
van der Heijden et al., 2008). The number of liana-loaded
trees has been shown to increase with the size of the host
trees in a tropical montane forest of southern Ecuador
(Fadrique & Homeier, 2016). It was, in contrast, negatively
associated with tree diameter in tropical lowland forests
(Reis et al., 2020; van der Heijden et al., 2008). The light in
the tree crown is also an important determinant and has
been positively related to liana-loaded trees in Amazonia
(Reis et al., 2020; van der Heijden et al., 2008). As most
lianas seem to proliferate in high light conditions, well-lit
tree crowns may present a higher risk of liana loads
(Malizia & Grau, 2006).

Following Muller-Landau and Visser (2019), the
proportion of trees covered by lianas was defined as the
liana prevalence at the species level. Previous studies have
identified that some tree species have a higher rate of liana
prevalence than others (Alvira et al., 2004; Campbell &
Newbery, 1993; Muller-Landau & Visser, 2019; Putz,
1984a, 1984b; Reis et al., 2020; Schnitzer et al., 2000; van
der Heijden et al., 2008; Visser et al., 2018). This interspe-
cific variation in liana prevalence was associated with tree
species traits that prevent lianas from covering them, nota-
bly, having flexible stems, long leaves, long branch-free
boles, and smooth bark (Campbell & Newbery, 1993;
Carsten et al., 2002; Putz, 1984a). In central Africa, func-
tional traits including wood density, light requirements,
dispersal mode, and deciduous leaf habit provided insights
into the life-history strategy of tropical tree species
(Loubota Panzou, Ligot, et al., 2018). The liana prevalence
was determined by species wood density in Amazonia,
with heavy-wood density species having a high liana prev-
alence (Reis et al., 2020). Light requirement for regenera-
tion that reflects a species strategy of light capture
(Turner, 2001) was found to be negatively related to liana
prevalence in Panama (Muller-Landau & Visser, 2019).
The dispersal mode, which is crucial for the recruitment,
distribution, and dynamics of plant populations (Nathan &
Muller-Landau, 2000), was also found to be related to the
liana prevalence, with animal-dispersed species showing
higher liana prevalence (Ickes et al., 2005). In contrast, the
deciduous leaf habit, which is a successful strategy to cope
with dry season in tropical forests (Borchert et al., 2002),
was not found to be associated with liana prevalence in
Argentina (Malizia & Grau, 2006).

Lianas strongly influence forest structure at the stand
level by competing with trees for below- and above-
ground resources (Schnitzer & Bongers, 2011; van der
Heijden & Phillips, 2009). Trees experiencing liana loads
on their crowns may have fewer resources to increase in
height and diameter, and consequently exhibit lower
aboveground biomass than trees without those extra
loads (Putz, 1984a). The liana load was found to signifi-
cantly alter tree allometry, decreasing height–diameter
ratio in Amazonian forests (Dias et al., 2017; Reis
et al., 2020; van der Heijden et al., 2008) and to negatively
affect plot-level aboveground biomass (Ledo et al., 2016;
van der Heijden & Phillips, 2009), and thus diminish the
carbon storage potential in tropical forests (Gerwing &
Farias, 2000; Laurance et al., 2001).

Comparison of the intensity, determinants, and
impacts of liana load among tropical forest species has
barely been addressed (but see Reis et al., 2020 in
Amazonia; Muller-Landau & Visser, 2019 in Central
America), and, to our knowledge, never in Africa.
The central Africa especially remains an understudied
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region (Verbeeck et al., 2011) compared with the other
tropical regions, where liana abundance and biomass
have been shown to dramatically increase over the last
decades (Schnitzer & Bongers, 2011). A better estimation
of liana load, which is largely site-dependent in tropical
forests (Muller-Landau & Visser, 2019), and understand-
ing of the determinants and impacts of liana loads in
tropical forests are both important in community ecology
and ecosystem science (Schnitzer & Bongers, 2002, 2011).

In this context, the study aimed to evaluate the inten-
sity, determinants, and impacts of liana load in three for-
est sites in central Africa. We addressed three research
questions:

1. What is the extent of variation in liana load on host
trees and liana prevalence among tree species?

2. What are the determinants of the liana load at the tree
level and liana prevalence at the species level?

3. Does liana load impact forest structure, such as tree
height–diameter allometry?

METHODS

Study sites

The study was conducted in three forest sites
characteristic of three major forest types identified by
Réjou-Méchain et al. (2021) in central Africa (Figure 1).
The Luki site is representative of the Atlantic highland
evergreen forest (Atla-F) in the southwest of the
Democratic Republic of Congo and the forest in Luki was

F I GURE 1 Location and characteristics of the three study sites in the southwestern Democratic Republic of the Congo

(Atlantic highland evergreen forest [Atla-F]) and in the northern Republic of Congo (semideciduous forest [Semi-F] and

evergreen-semideciduous forest on sandstone [Sand-F]) in central Africa on a background map of tree cover (Hansen et al., 2013).

The mean annual temperature (MAT; in degrees Celsius), mean annual rainfall (MAR; in millimeters), number of species and trees sampled,

and sampling effort in terms of diameter (D, in centimeters) range are provided for the three sites.
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described in detail by Lubini (1997). Two other study
sites, representative of the semideciduous forest (Semi-F)
and the evergreen-semideciduous forest on sandstone
(Sand-F), which were described by Fayolle et al. (2014),
were inventoried in the northern Republic of Congo.
The three forest sites show a slight topography with aver-
age altitudes varying between 430 and 530 m. On aver-
age, the annual rainfall is 1200 mm for the Atla-F and
1600 mm for both the Semi-F and Sand-F, and the mean
annual temperature is 25�C in the three forest sites.

Sampling and tree measurements

Fieldwork was mostly conducted in permanent plots
installed in old-growth forests in 8 � 1-ha plots for
the southern site (Atla-F) and 18 � 1-ha plots for
each of the two northern sites, Semi-F and Sand-F
(Forni et al., 2019). In the plots, all trees with diameters
≥10 cm were inventoried and identified to species level,
and plot data were used to select at least 30 abundant
coexisting tree species (including ≥56% of all trees ≥10-cm
diameter) in each forest site. In the two northern sites
(Semi-F and Sand-F), we additionally estimated liana
abundance on all trees within two 1-ha plots and regularly
over a 20 � 20 m grid for the other 16 plots. A total of
2683 trees belonging to 78 tree species were sampled in the
three sites (309 trees belonging to 30 species for the Atla-F,
1108 trees belonging to 45 species for the Semi-F, and
1266 trees belonging to 34 species for the Sand-F)
with five species shared by the three sites, and 21 shared
by the closest northern sites (Semi-F and Sand-F).
These 78 species belong to 64 genera and 31 families
(Fabaceae is the most abundant family with 12 species,
Appendix S1: Table S1). We aimed to sample 30 trees
(range: 10–162) per species within each site to cover the
species diameter range and establish species-specific allo-
metric relationships (Loubota Panzou, Ligot, et al., 2018).

For each tree, the liana load was visually estimated
by the same observer with the four categories proposed
by Rutishauser et al. (2011), which were concordant
with drone assessments in northern Republic of Congo
(Kaçamak et al., 2022). The four liana load categories were
as follows: 0 for no lianas in the crown, 1 for 1%–25% of the
crown covered by lianas leaves, 2 for 26%–50% of the crown
covered, and 3 for >51% of the crown covered. In addition,
nondestructive quantitative measurements including tree
diameter, total height, height of the first branch, the hori-
zontal projection of four crown radii, and one qualitative
measurement (crown exposure index described below) were
performed for each tree following Loubota Panzou, Ligot,
et al. (2018) and Loubota Panzou, Fayolle, et al. (2018).
Tree diameter (D; in centimeters) was measured with a tape

at breast height or 30 cm above any deformation. Total tree
height (H; in meters) and height of the first branch (Hfb, in
meters) were measured using a VERTEX IV dendrometer,
which is a valuable tool for nondestructive height measure-
ments in central African forests (Fayolle et al., 2016). For
crown measurements, we used the crown measurement
protocol (Loubota Panzou & Feldpausch, 2020). Crown
depth (Cdept) was defined as the length of the crown, which
was calculated from the difference between H and Hfb. The
crown diameter (Cdia) was defined from two times the
mean of the crown radii measured according to the four
cardinal directions. The crown exposure index (CEI)
describing the crown position in the canopy and exposure
to light (Dawkins, 1966) was visually estimated using the
following five classes (Moravie et al., 1999): (1) for lower
understory trees that are entirely shaded vertically and lat-
erally by other crowns; (2) for upper understory trees that
are entirely shaded vertically but with some direct side
light; (3) for lower canopy trees that are partly exposed and
shaded vertically by other crowns; (4) for upper canopy
trees that are fully exposed from above but laterally com-
plete with other crowns; and (5) for emergent trees that are
free from competition for light, at least within the 90�

inverted cone in which their crown lies. For the analyses,
we used the three CEI groups adapted from Clark and
Clark (1992) and representing trees in low light (trees with
Code 1), in medium light (trees with Codes 2 and 3), and
high light (trees with Codes 4 and 5) conditions.

Species traits

Here, we compiled seven traits including wood density,
maximum height (Hmax), maximum diameter (Dmax), light
requirement, leaf habit, dispersal mode, and regeneration
guild for each species (Appendix S1: Table S1). We
obtained the species average wood density (WD; in grams
per cubic centimeter) from the global wood density data-
base (Chave et al., 2009; Zanne et al., 2009) and species
average varied from 0.29 to 0.89 g cm�3. We respectively
calculated Dmax (range: 13–130 cm) and Hmax (range:
11–61 m) as the 95th percentile of tree diameter and total
height of the sampled trees for each species.

We quantified the crown exposure to light for juvenile
plants (CEIjuv), which is a good indicator of species light
requirement (Poorter et al., 2005, 2006). We fitted
species-specific multinomial logistic regressions between
the CEI and tree diameter, in agreement with Loubota
Panzou, Ligot, et al. (2018) in central Africa. For each
species, we obtained CEIjuv (range: 1.03–4.22) using the
CEI prediction of the species-specific multinomial logistic
regression for 10 cm diameter as first proposed by
Poorter et al. (2005, 2006).

4 of 12 LOUBOTA PANZOU ET AL.
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We extracted the information on deciduous leaf habit
(56 species were considered evergreen and 17 species
were considered deciduous), dispersal mode (46 were
animal-dispersed species, 16 were wind-dispersed species,
and 7 had unassisted dispersed species), and regeneration
guild (44 were classified as shade-bearer species, 25 as
nonpioneer light-demanding species, and 9 as pioneer
species) from the literature (Gillet & Doucet, 2012;
Hawthorne, 1995; Meunier et al., 2015).

Data analysis

Following Muller-Landau and Visser (2019), we defined
the liana prevalence as the proportion of trees covered by
lianas using the four categories of liana load. We quanti-
fied three indices of liana prevalence for each species
(Appendix S1). The first one (LIprop) was simply the pro-
portion of trees with lianas in the crown (trees with
Codes 1, 2, or 3). The second one (LIheavy) was the pro-
portion of trees heavily covered by lianas (>25% of the
crown covered by lianas, trees with Codes 2 and 3).
Since the first two indices do not consider the tree size
in the proportion of trees covered by lianas, a third
index has been estimated using logistic regression
(family = binomial) between liana load (presence and
absence) and tree size. Tree height was the predictor vari-
able since liana loads were related to tree height
(p < 0.001) and not to tree diameter (p = 0.633) using lin-
ear relationships. We fitted species-specific relationships
between liana loads and tree height, and for each species
we calculated the third index (LIjuv), which is the esti-
mated liana load for juvenile plants of 2 m height, in
agreement with Poorter et al. (2006). Furthermore, we
found that LIprop and LIheavy indices were positively cor-
related (Pearson r = 0.71, p < 0.001), as well as LIprop
and LIjuv indices (Pearson r = 0.94, p < 0.001). Thus, the
first index defined as the proportion of trees covered by
lianas (LIprop, response variable) was used as the liana
prevalence for the subsequent analyses.

To evaluate the most critical factors in determining
liana load and prevalence, we developed general linear
mixed effect models at the tree level (Equation 1 with
liana presence and absence as response variable) and at
the species level (Equation 2 with the proportion of trees
covered by lianas as response variable). We used the
characteristics of the host trees (tree diameter, tree
height, crown depth, crown diameter, wood density, and
crown exposure index) as determinants at the tree level,
and species traits as determinants at the species level.
Prior to this analysis, we removed possible collinearity
among determinants (fixed effects of mixed linear
models) using pairwise correlations. Because of

collinearity, we had to exclude tree diameter and maxi-
mum diameter at tree and species levels, respectively.
After removing these variables, all pairwise correlations
were weak enough not to cause collinearity problems
(Pearson r < 0.7). At the tree level, the modeling
approach of a tree i included tree height (H), wood den-
sity (WD), crown exposure index (CEI), crown diameter
(Cdia), and crown depth (Cdep) as fixed effects and taxon-
omy (a nested design of family, genera within families,
and species within genera within families) and site as
random effects (Equation 1). Likewise, species traits
including maximum height, wood density (WD), light
requirement (CEIjuv), deciduous leaf habit (LH), guild
regeneration (GR), and dispersal mode (DM) were
included in the model as fixed effects and species clus-
tered within site as random effects of a tree i belonging to
species s (Equation 2).

Liana loadi ¼ βþα1�Hiþα2�CEIiþα3�Cdiai

þα4�Cdepiþα5�WDiþβfamily i½ �
þβgenera�family i½ �þβspecies�genera�family i½ �
þβsite i½ �,

ð1Þ

Liana prevalenceis ¼ βþα1�Hmaxis þα2�CEIjuvis
þα3�WDisþα4�LHisþα5�GRis

þα6�DMisþβspecies is½ �þβsite is½ �,
ð2Þ

where α and β are the slope and intercept, respectively.
To examine the impacts of liana load on forest

structure, we tested the variation in height–diameter
allometry between liana-loaded trees and liana-free trees
in each forest site. Asymptotic models have been
demonstrated to better describe height–diameter allome-
try for aboveground estimation in tropical forests.
The Michaelis–Menten model was found to provide a
good fit for height–diameter data in central Africa
(Fayolle et al., 2016; Loubota Panzou et al., 2021). In each
forest site, the Michaelis–Menten model has been
used to fit height–diameter allometric relationships for
liana-loaded trees and liana-free trees using the following
equation based on height (H) and diameter (D) of a tree
i belonging to liana factor (liana-loaded trees and
liana-free trees) l in each forest site:

Hil ¼ al�Dil= blþDilð Þ, ð3Þ

where a and b are model parameters.
To test for significant differences in tree height–

diameter allometry between liana-loaded trees and
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liana-free trees, we fitted four models on the whole data
set in each forest site: (1) a general model with fixed
parameters (a and b), (2) varying al and bl, (3) varying al
and fixed b, and (4) fixed a and varying bl. The model
selection for each forest site was based on (i) the likeli-
hood ratio test (a statistical test used to compare the
goodness of fit of two statistical models); we considered
the null model as a model with fixed coefficients without
a liana factor effect (1), whereas the alternative models
were the ones described above as (2), (3), and (4); and (ii)
the model’s Akaike information criterion (AIC) and
Bayesian information criterion (BIC) values, with the
lowest AIC and BIC indicating the best model (Burnham
& Anderson, 2002).

All the statistical analyses were performed in the open
source R environment (R Core Team, 2021), using the
following packages: “ggplot2” for graphical output
(Wickham, 2016) and “lme4” for the mixed linear model
inference (Bates et al., 2015). Because the conditions of
normality and homoscedasticity of residuals checked with
Shapiro–Wilk and Breusch–Pagan tests, respectively, were
not met, we used the nonparametric Kruskal–Wallis rank
sum tests to test the differences among liana load catego-
ries in tree vertical structure (tree height and crown depth)
at the tree level and among dispersal mode categories in
liana prevalence at the species level. The null hypothesis
for the nonparametric Kruskal–Wallis test was “no differ-
ence between medians for each qualitative variable”
(Hollander & Wolfe, 1973). When the null hypothesis was
rejected, we conducted post hoc Kruskal–Wallis multiple
comparisons between medians (Siegel & Catellan, 1988)
available in the PGIRMESS package (Giraudoux, 2013).

RESULTS

Variation in liana load and prevalence

At the tree level, 41.6% of the 2683 trees sampled in the
three forest sites ranging from 10 to 250 cm diameters
and belonging to 78 tree species were liana-loaded in the
three forest sites. The number of liana-loaded trees was
higher for smaller diameter classes in the three forest
sites (Table 1).

At the species level, the liana prevalence varied from
0% to 90% (Appendix S1). Species particularly suscepti-
ble to liana prevalence were Pentaclethra macrophylla
(Fabaceae) with 90% of trees were liana-loaded in the
Atla-F, Celtis tessmannii (Cannabaceae) and Garcinia
punctata (Clusiaceae) with 85% of trees were
liana-loaded in the Semi-F, and Carapa procera
(Meliaceae) with 70% of trees were liana-loaded in the
Sand-F (Appendix S1).

Determinants of liana load and prevalence

At the tree level, the liana load (presence and absence)
was most strongly related to tree height, crown depth,
and crown exposure index (Figure 2a; Appendix S1:
Table S2). We detected significant variation in tree height
and crown depth among liana load categories, indicating
that liana-loaded trees were smaller but showed deeper
crown (Figure 2b,c). We found a potential difference of
4 m for tree height and 2 m for crown depth between
liana-loaded trees and liana-free trees, indicating a reduc-
tion in tree height due to the liana presence. Indeed, the
median and 95% confidence interval was 17.2 m
(16.6–17.6 m) for tree height and 7.5 m (7.0–7.9 m) for
crown depth for liana-loaded trees and 21.2 m
(20.0–22.0 m) for tree height and 5.9 m (5.7–6.2 m) for
crown depth for liana-free trees. In addition, the effect of
light condition was also significant in the model.

At the species level, the liana prevalence was strongly
related to species light requirement (CEIjuv) and species
dispersal mode (Figure 3a; Appendix S1: Table S2).

TABL E 1 Number (with percentages in parentheses) of trees

according to four liana load categories (0: 0%; 1: 1%–25%;
2: 25%–50%; and 3: >50% of the crown covered by lianas) and

number (with percentages in parentheses) of liana-loaded trees for

all tree diameters and according to three diameter (D) classes in

three forests sites including the Atlantic highland evergreen forest

(Atla-F), the semideciduous forest (Semi-F), and the

evergreen-semideciduous forest on sandstone (Sand-F).

Category Atla-F Semi-F Sand-F

Sampling

No. species 30 45 34

No. trees 309 1108 1266

Diameter range (cm) 10–154 10–162 10–250

Liana load category

0 179 (58) 544 (49) 845 (67)

1 78 (25) 293 (26) 244 (19)

2 33 (11) 87 (8) 95 (8)

3 19 (6) 184 (17) 82 (6)

Diameter class

All tree diameters 130 (42) 564 (51) 421 (33)

10 ≤ D < 30 cm 80 (62) 336 (59) 304 (72)

30 ≤ D < 70 cm 42 (32) 171 (31) 97 (23)

D ≥ 70 cm 8 (6) 57 (10) 20 (5)

Note: The three diameter size classes were as follows: the lower stratum with
small trees (10 cm ≤ D < 30 cm), the middle stratum with large trees, most
of which reach the canopy (30 cm ≤ D < 70 cm), and the upper stratum
corresponding to the largest trees, which were either in the canopy or

emergent, with diameter ≥70 cm, as shown in Loubota Panzou, Fayolle,
et al. (2018).
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The liana prevalence was negatively correlated with the
species light requirement for the three forest sites (Pearson
r = �0.51, p < 0.001), indicating that light-demanding
species showed a lower liana prevalence rate (Figure 3b),
potentially due to their greater height. A significant
variation was identified in the liana prevalence among
dispersal mode types, with wind-dispersed species showing
a lower rate of liana prevalence (Figure 3c).

Impacts of liana load on forest structure

In each forest site, we identified a significant variation in
height–diameter allometry between liana-loaded and
liana-free trees (Figure 4). Based on AIC and BIC values,
we selected the Michaelis–Menten models with different
a coefficient values (Hmax) between liana-loaded and
liana-free trees (Table 2). For a given diameter, liana-free
trees were taller than liana-loaded trees (Figure 4,
Table 2).

DISCUSSION

This study provides important insights into the intensity,
the determinants, and the impacts of liana load in central
African moist forests. Among the 2683 trees sampled in
three forest sites, 42% were liana-loaded and the liana
prevalence was highly variable among species within
each forest site. The main determinants of liana load at
the tree level were related to the tree vertical structure
(tree height and crown depth), and the main determi-
nants of liana prevalence at the species level were species
dispersal mode and to a lesser extent species light
requirement. Furthermore, our results indicated that
liana load altered tree height–diameter allometry.

Intensity of liana load and prevalence

Our results showed that less than half of all trees stud-
ied with diameter ≥10 cm were liana-loaded in the
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F I GURE 2 Tree-level determinants of liana load: (a) standardized coefficients of liana load with error bars showing confidence

intervals (***p < 0.001) and all coefficients from fixed effects and random effects are shown in Appendix S1: Table S2; (b, c) bivariate

relationships between the liana load categories and the significant variables with box plots showing tree height and crown depth for each of

liana load categories (0: 0%; 1: 1%–25%; 2: 25%–50%; and 3: >50% of the crown covered by lianas) where the significant differences

(nonparametric Kruskal–Wallis test) are shown by different letters using post hoc Kruskal–Wallis multiple comparisons between medians.
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three forest sites. This is the first time such an
estimation of liana load intensity has been performed
in central Africa. The number of liana-loaded trees is
lower in central Africa than in Amazonia, as reported
in the previous studies of Putz (1984a, 1984b),
van der Heijden et al. (2008), and Reis et al. (2020).
Apparently, the dominance of liana observed in the
Neotropics (>50% of trees) appears less important in
central Africa. In addition, the number of liana-loaded
trees gradually decreased with increasing diameter
classes, as previously reported by van der Heijden
et al. (2008) in Amazonia. Trees of smaller size classes
may be more prone to liana loads since lianas gener-
ally climb on successively taller trees to reach the
canopy (Putz, 1995).

The liana prevalence, corresponding to the
proportion of trees covered by lianas (Muller-Landau &
Visser, 2019), varied among coexisting tree species
within each forest site in central Africa, in agreement

with previous studies in the Neotropics (Alvira
et al., 2004; Campbell & Newbery, 1993; Muller-Landau &
Visser, 2019; Putz, 1984a, 1984b; Reis et al., 2020;
Schnitzer et al., 2000; van der Heijden et al., 2008;
Visser et al., 2018). High rates of liana prevalence were
always related to particular species. P. macrophylla
was in the Atla-F consisting of a mixture of evergreen
and deciduous species (Lubini, 1997), C. tessmannii
was in the semideciduous forest that is dominated by
light-demanding tree species such as Celtis spp.
(Fayolle et al., 2014), and Carapa procera was in the
evergreen-semideciduous forest on sandstone that
is enriched by many slow-growing shade-tolerant
species (Fayolle et al., 2014). These species with a high
rate of liana prevalence in one site had not necessarily
a high rate of liana prevalence in the other sites, which
suggests that the same tree species is not always colo-
nized by liana in the same way, with the same
liana load.
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F I GURE 3 Species-level determinants of liana prevalence: (a) standardized coefficients with error bars showing confidence intervals

(***p < 0.001) and all coefficients from fixed effects and random effects shown in Appendix S1: Table S2; (b, c) bivariate relationships

between the liana prevalence and light requirement with the Pearson correlation coefficient (r) and the dispersal mode where the significant

differences (nonparametric Kruskal–Wallis test) are shown by different letters using post hoc Kruskal–Wallis multiple comparisons between

medians. Deciduous leaf habit (evergreen vs. deciduous), regeneration guild (SB, shade-bearer and P, pioneer), and dispersal mode (Un,

unassisted; An, animal dispersal; and Wi, wind).
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Liana load and prevalence determined by
tree vertical structure and species traits

At the tree level, the factors that determine the liana load
were the tree height and crown depth. Liana-loaded trees
were smaller and had a larger crown depth. Most lianas
were loaded on a tree trunk by surrounding it, but are
restricted by a maximum host diameter that they can
encircle (Dewalt et al., 2000; Putz, 1984b). In contrast, for
the crowns, large crowns favor liana colonization, and
trees experiencing liana loads on their crowns may have
fewer resources to increase in height (Putz, 1984b). Liana
loads thus significantly alter tree allometry as reported in
Amazonia (Dias et al., 2017; Reis et al., 2020) by decreas-
ing slenderness (tree height–diameter ratio).

Species traits including light requirement and dispersal
mode significantly influenced the liana prevalence,
suggesting that light-demanding and wind-dispersed species
had a low level of susceptibility to lianas, in agreement with
the results of Visser et al. (2018) and Muller-Landau and
Visser (2019) in Panama. The liana prevalence was also
influenced by wood density and maximum height in
Amazonian moist forest (van der Heijden et al., 2008). In
central Africa, we found that wind-dispersed species had a

low rate of liana prevalence. The wind-dispersed species
may be inclined to grow up fast, having less liana preva-
lence (Wright et al., 2007) and being larger statured
(Loubota Panzou, Ligot, et al., 2018).

Impact of liana load on forest structure

We found that the a coefficient (Hmax) of the
Michaelis–Menten model varied significantly between
liana-loaded and liana-free trees in each forest site.
This result suggests that at small diameters, liana-loaded
and liana-free trees show similar allometries, but they
diverge in their resource allocation strategies at larger
diameters (Hulshof et al., 2015). Liana-loaded trees were
significantly shorter in height than liana-free trees, in
agreement with the results of Dias et al. (2017) in
Amazonia. Given that lianas cause mechanical stress on
trees due to the additional weight added to the tree crown,
they reduce the total height of tree host and might
enhance the probability of the tree trunk bends and breaks
(Putz et al., 1983). For adult trees, liana loads result in a
greater decrease in height than in diameter (Dias
et al., 2017). Lianas can over-compete trees because of
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F I GURE 4 Height–diameter allometric relationships between liana-loaded trees and liana-free trees in three forests sites (Atlantic

highland evergreen forest [Atla-F]; semideciduous forest [Semi-F]; and evergreen-semideciduous forest on sandstone [Sand-F]).
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their lower investment in supporting tissues and, once at
the canopy, because they overshadow and displace host
tree leaves, rivaling with them on aboveground resources
(Putz, 1984a; Putz et al., 1983; Schnitzer et al., 2005).

Lianas significantly impact the capacity of tropical
forests to store and sequester carbon in trees (van der
Heijden et al., 2015). Several studies have already
demonstrated that liana load decreases tree growth
rates (Campanello et al., 2007; Clark & Clark, 1990;
Putz, 1984b) and affects the carbon stocks (van der
Heijden et al., 2008). In response to this reduction of tree
height, areas with larger values of aboveground biomass
were negatively associated with the presence of lianas
(Ledo et al., 2016; van der Heijden & Phillips, 2009).
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